Możliwości, korzyści i bariery wdrożenia algorytmu AdaBoost w zarządzaniu procesami logistycznymi 

Main Article Content

Roman Jędras


Słowa kluczowe : algorytm AdaBoost, sztuczna inteligencja, zrównoważony rozwój, optymalizacja procesów logistycznych, systemy ERP/WMS 
Abstrakt
Głównym celem artykułu jest wskazanie możliwości zastosowania algo- rytmu AdaBoost w procesach logistycznych oraz ocena korzyści, barier i wyzwań związanych z jego wdrożeniem. Badanie skupia się na ocenie możliwości wykorzy- stania tego rozwiązania w optymalizacji procesów logistycznych oraz potencjale jego integracji z systemami ERP i WMS. W pracy wykorzystano przegląd literatu- ry, analizę danych statystycznych oraz analizę porównawczą. Wyniki wskazują na znaczną poprawę precyzji prognoz popytu, efektywności operacyjnej oraz redukcję kosztów magazynowania i emisji CO2. Jednocześnie zidentyfikowano kluczowe bariery wdrożeniowe, takie jak brak interoperacyjności systemów IT oraz duże koszty implementacji, które szczególnie dotykają małe i średnie przedsiębiorstwa. Wnioski podkreślają potrzebę strategicznego podejścia do wdrożeń oraz intensy- fikacji współpracy między sektorem naukowym a przemysłowym w celu prze- zwyciężenia barier. Artykuł wskazuje również na konieczność kontynuacji badań, w szczególności nad różnicami we wdrażaniu algorytmu w różnych regionach i sektorach gospodarki, aby pełniej zrozumieć jego możliwości i ograniczenia. 

Article Details

Jak cytować
Jędras, R. (2025). Możliwości, korzyści i bariery wdrożenia algorytmu AdaBoost w zarządzaniu procesami logistycznymi . Ekonomika I Organizacja Logistyki, 9(4), 37–53. https://doi.org/10.22630/EIOL.2024.9.4.27
Bibliografia

Chen, T., & Guestrin, C., 2016: XGBoost: A scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794. https://doi.org/10.1145/2939672.2939785.

DHL Freight Connections, 2023: Logistics trends 2023/2024: Which direction for AI? DHL Freight. Retrieved February 26, 2025, from https://dhl-freight-connections.com/en/trends/logistics-trends-2023-2024/.

Freund, Y., & Schapire, R. E., 1997: A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55, 119–139. https://doi.org/10.1006/jcss.1997.1504.

Friedman, J., Hastie, T., Tibshirani, R. 2009: The elements of statistical learning: Data mining, inference, and prediction (2nd ed.). Springer.

GeeksforGeeks, 2024: Implementing the AdaBoost Algorithm From Scratch. GeeksforGeeks. Retrieved February 26, 2025, from https://www.geeksforgeeks.org/implementing-the-adaboost-algorithm-from-scratch/.

Ghobakhloo, M., 2018: The future of manufacturing industry: A strategic roadmap toward Industry 4.0. Journal of Manufacturing Technology Management, 29(6), 910–936. https://doi.org/10.1108/JMTM-02-2018-0057

Helo, P., Hao, Y., 2021: Artificial intelligence in operations management and supply chain management: An exploratory case study. Journal of Manufacturing Systems, 61, 314–328. https://doi.org/10.1080/09537287.2021.1882690.

Khan, F. R., 2021: Apache Kafka with real-time data streaming. ResearchGate. Retrieved February 26, 2025, from https://www.researchgate.net/publication/348575301_Apache_kafka_with_real-time_data_streaming.

McKinsey & Company, 2022: Data sharing in logistics: Driving value across entire production lines. McKinsey & Company. Retrieved February 26, 2025, from https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai-in-2022-and-a-half-decade-in-review.

Meng, Q., Ke, G., Wang, T., Chen, W., Ye, Q., Liu, T. Y., 2017: LightGBM: A highly efficient gradient boosting decision tree. Advances in Neural Information Processing Systems, 30.

Mhaskey, S. V. 2024: Integration of artificial intelligence in enterprise resource planning systems: Opportunities, challenges, and implications. International Journal of Computer Engineering in Research Trends. https://doi.org/10.2023/ijcert/2024/11/12/112101.

Monostori, L., Kádár, B., 2018: Cyber-physical production systems: Roots, expectations and R&D challenge. Procedia CIRP, 57, 1–6. https://doi.org/10.1016/j.grets.2022.100001.

Rosemaro, X., Khamlichi, Y., 2023: The impact of AI on computational efficiency in distributed systems. Research Journal of Computer Systems and Engineering, 4(1), 8–14. https://doi.org/10.52710/rjcse.57.

Strategy & Consulting, 2021: Supply chain analytics and AI in driving relevance, resilience and responsibility. Accenture. Retrieved February 26, 2025, from https://www.accenture.com/us-en/insights/artificial-intelligence/supply-chain-analytics-ai.

Sudhakar, K., 2018: Amazon Web Services GLUE. SSRN Electronic Journal, 8(1), 108–122. https://www.researchgate.net/publication/354511071_Amazon_Web_Services_AWS_GLUE.

Statystyki

Downloads

Download data is not yet available.