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Abstract. As finance practitioners increase their reliance on computational models 
and data, the risk associated with erroneous models and improper model usage 
increases, with consequences for individual companies, regulatory bodies, and the 
larger economy. To help control model risk, we identify five categories of model 
risk sources: 1) dataset issues; 2) data processing related issues; 3) model constru-
ction related issues, 4) model implementation related issues; 5) model interpreta-
tion related issues. We justify this classification with examples in each category 
that study the impact of these sources on the estimates of systemic risk measures. 
The aim of the article is to draw attention to the need to create a framework for risk 
management in a logistics company based on a bank, which would include quanti-
tative models. The article also presents general strategies that can be implemented 
in such a risk management framework in a logistics enterprise using the example 
of a bank.

Key words: Model Risk, Model Risk Management, Systemic Risk Measures, 
Monte Carlo, bank, Banking, Logistics company
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ram zarządzania ryzykiem w przedsiębiorstwie logistycznym na podstawie banku, 
które obejmowałyby modele ilościowe. W artykule  przedstawiono również ogólne 
strategie, które można wdrożyć w takich ramach zarządzania ryzykiem w przedsię-

biorstwie logistycznych na przykładzie banku.

Słowa kluczowe: ryzyko modelu, zarządzenie ryzykiem modelu, miary ryzyka sy-

stemowego, Monte Carlo, bank, bankowość, przedsiębiorstwo logistyczne instytu-

cja finansowa

Kody JEL:  D81, C63, O1/P4

Introduction

Quantitative finance is usually assumed to have started with the doctoral thesis “The 
theory of speculation” written by Louis Bachelier [Bachelier 1900, Cesa 2017]. Since 
then, mathematical and computational models have been used for a wide variety of appli-

cations in finance, including pricing [Black and Scholes 1973] and evaluating risk pro-

files [Merton 1974]. Due to the digitalization of modern businesses, mathematical and 
computational models have been incorporated within banking logistics as well, such as 

for reducing the costs associated with cash inventory optimizations [Baker et al. 2012], 
cash demand forecast [Cedolin et al. 2024] and customer flow optimization [Madadi et al. 
2013].With much of the finance world relying on models, it is not surprising that, at some 

point, many of these models may cause various financial crises, whereas others indicate 

the reliance on these models for causing the crises [Weatherall 2013].
Given the widespread use of models, it is thus important that the practitioners under-

stand the risks associated with their use. Improper model risk management can be damag-

ing for investors, companies, and, under some circumstances, propagate these negative 

effects to the larger economy. The term model risk here refers to the risk associated with 

the general development and usage of models and is a subject of active research. Models 

are built on observed data and have implicit and explicit assumptions about the workings 

of the world. 

Since they approximate various phenomena, their value in guiding practitioners can 

only be as good as the data used to build the model, the assumptions that entered the 

model, the implementation of the model, and the interpretation of the results. According 

to Derman [Derman 1996], model risk is a consequence of general model construction 
and uncertainty in the field of finance, a view shared by some researchers [Crouhy et 
al. 1998]. Everything related to a model is thus a part of the model risk, including data 

contamination, incorrect implementations, poorly approximated solutions, software or 

hardware bugs, and the practitioners themselves. With this view, it is difficult to isolate 

the individual sources of risk for risk control.

The goal of any organization is, among other things, to manage efficient logistics 

processes. Its implementation requires the implementation of a risk management system 

so that it is possible to estimate significant risk groups accompanying the implementation 

of the logistics processes, develop integrated risk management strategies, and develop 

risk analysis tools in logistics processes. Risk management is the planned and deliberate 

analysis, control and control of risk positions. Planning means a systematic, not random 
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analysis, while purposefulness means conscious tracking of the positions, opportunities 

and risks of a specific institution derived from the company’s goals. Effective risk man-

agement in logistics requires the identification and analysis of potential threats, planning 

and implementation of the risk minimization measures, plus regular monitoring of their 

effectiveness and adaptation to changing the business conditions. 

Planning means a systematic rather than a random analysis, while purposefulness 

means conscious tracking of the positions, opportunities and risks of a specific institu-

tion derived from the company’s goals. Effective risk management in logistics requires 

the identification and analysis of potential threats, planning and implementation of risk 

minimization measures, and regular monitoring of their effectiveness and adaptation to 

changing business conditions.

Some authors study model risk with more focused points of view. For example, few 

research works define model risk as the inaccuracy arising from estimation errors and the 

use of incorrect models [Boucher et al. 2014, Glasserman and Xu 2014, Hendricks 1996]. 
Few other authors consider model risk induced by the data-fitting approach used for sta-

tistical modelling, namely, the choice of tests for the data and estimation of the model 

parameters [Sibbertsen et al. 2008]. For readers interested in the quantification of model 
risk, we indicate the active research occurring in this domain [Danielsson et al. 2016, 
Banulescu-Radu et al. 2020, Pasieczna 2021]. As opposed to quantifying the model risk, 

the aim of this work is to identify and categorize the model risk sources. 

This paper highlights the need for better model risk management, and endeavors to 

push for proper documentation, implementation, and usage of quantitative models, espe-

cially for those relying on large amounts of data. While listing the model risk sources, 

this work relies on examples based on market-data based models that quantify systemic 

risk (SR). Specifically, we highlight potential issues that occur with the computational 

tools used for estimating stress in a financial network. SR is the risk of collapse of the 

entire financial system. As opposed to the risk on an individual bank, the risk is spread  

(and realized) across the entire financial network. A systemic collapse tends to have trig-

gers at individual banks (e.g., bankruptcy of a very important bank), and can have con-

sequences that leak into the larger economy (e.g., a national level recession). Systemic 

risk measures (SRMs) aim to quantify the level of stress of the system and recognize  

the major contributors, and so SRMs are a crucial tool for regulators and banking institu-

tions. Since systemic events impact the larger economy, it is highly important that they 

accurately measure that for which they were proposed. Underestimating SR might result 

in more risk-taking behaviors by banks, leading to an increase in the overall financial 

stress and an increased risk of a systemic collapse with long-term consequences for the 

real economy. On the other hand, overestimating SR can cause regulators to apply exces-

sive penalties on banks, leading to a decrease in economic stimulus and a consequent 

slow-down in economic growth.

The importance of banking logistics cannot be understated in the context of SR, since 

failures in appropriate modeling of the various processes in liquidity and risk manage-

ment can result in a shock that negatively impacts the broader financial system. For exam-

ple, delays or disruptions in replenishment of cash at ATMs due to external factors (e.g., 

natural disasters, war) can lead to customers causing bank runs, resulting in a liquidity 

crisis and an eventual propagation of the contagion into the larger financial system.
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Typically, there are two main model families (not a strict classification) used when 
measuring SR: network models and market-data based models. Network or graph models 
rely on balance sheet data to model the financial network, and use interbank connections 
(such as interbank loans) to propagate shocks [Cifuentes et al. 2014, Hurd 2016]. Mar-
ket-data based models, the focus in this work, rely on market data, such as stock prices, 
to estimate the correlations that indicate bank co-movements due to interbank dependen-
cies as well as exposures to common assets. The latter family has certain advantages, the 
main being that market data is accessible to the public and considered more informative 
(transparent) for investors. Additionally, market data is available at different frequencies 
(monthly, weekly, daily, intra-day), as compared to balance sheet data, typically available 
only once a quarter. Higher frequency data can be very insightful to analyze extremely 
fast SR contagion events.

While this work applies to a wide variety of SRMs and other computational models, 
we focus on two candidate SRMs to highlight potential sources of model risk. Both 
SRMs are related to the too-connected-to-fail (TCTF) aspect of SR. The first SRM 
is the marginal expected shortfall (MES), which looks at how a particular bank reacts 
when the market under-performs [Acharya et al. 2010, Brownlees and Engle 2012]. 
It can be interpreted as the marginal contribution of a bank to market falls [Idier et al. 
2013], and thus attempts to quantify the SR using the inter-connectedness of the finan-
cial network. If the MES of the bank is estimated with an external market index 
(as opposed to the index it belongs to), then it can represent the performance (sensitiv-
ity) of the bank to bad market days, and thus looks at the company’s exposure to SR. 

which looks at how the market risk changes to bank crashes [Adrian and Brunnermeier 

of inter-connectedness in quantifying the SR of the financial system. The chosen SRMs 
differ only in direction: one examines the reaction of banks to market falls (banks’ 
exposure to SR), the other examines the reaction of the market to bank crashes (finan-
cial network’s exposure to individual banks). 

We expect both SRMs to act independently of each other, except when the reference 
market index and the bank are highly correlated to each other. Typically, if an appropriate 
reference market index is chosen, such situations do not arise, and these SRMs capture 
slightly different effects from one another.

Despite their advantages, market-data based SRMs have certain limitations. Firstly, 
inter-connectedness is inferred from price returns correlations. It is difficult to con-
clude whether an observed correlation is due to an interbank dependency or an exposure 
to a common factor. Secondly, market-data based metrics give little to no importance 
to the precise cause of systemic triggers, and typically simulate shocks as drops in stock 
value of a bank or drops in a reference market index. Thirdly, they have high model risk 
[Danielsson et al. 2016], with even identification of systemically important banks with 
SRMs being prone to errors due to estimation risk alone [Danielsson et al. 2016]. The last 
point makes their use limited in the context of regulation, since if the model risk is high, 
the model outcomes are less dependable, and it becomes difficult for regulators to judge 
the systemic importances of banks. Given the high model risk of SRMs, they are good 
candidates to illustrate the need for better model risk management, which is the aim of this 
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paper. The risks associated with improper management of model risk can be devastating 

for individual banks, which are specific logistics companies, and the effects can translate 

into the real economy. 

The rest of the article has the following structure. Section 2 – Theoretical Concepts and 

Tools contains the theoretical concepts and tools used, namely, classification of the model 

risk sources, brief definitions of the SRMs, description of the data used, and the implementa-

tion details of the algorithm used to estimate the SRMs. Section 3 – Research results, being 

the main contribution of this article, expands upon the classification of the model risk sourc-

es with technical examples pertinent to the estimation of the chosen SRMs. When possible, 

we provide suggestions that might be used to reduce the model risk associated with certain 

sources. Section 4 discusses the implications of the work in the context of SRMs, along with 

schemes to manage the model risk. Section 5 concludes the article. 

The aim of this work is primarily to identify and classify the sources of model risk, 

along with the intention to create a dialogue between model developers and risk managers 

so that model risk can be properly estimated by the logistics company. To substantiate this 

classification, examples are provided of the impact that these sources have on the esti-

mates of logistic and systemic risk measures used by the banks and regulators to quantify 

the magnitude of stress in the financial system. The examples used cover a specific appli-

cation, although it can be used in other branches of the economy, including logistics.

Materials and Methods

Theoretical Concepts and Tools

Identification of Model Risk Sources

Multiple researchers have attempted to identify model risk sources in different finan-

cial models. For example, Derman [Derman 1996] identifies the following seven sources 
of model risk: 

inapplicability of modelling, 

incorrect model, 

correct model, incorrect solution, 

correct model, inappropriate use, 

poorly approximated solution, 

software and hardware bugs, 

unstable data. 

In another example, Kato et al. [2000]) state that in pricing models, the sources of 
model risk include: 

use of incorrect assumptions, 

errors in the estimations of parameters, 

errors resulting from discretization, 

errors in market data. 

For risk measurement models, they identify the difference between assumed and actual 

distribution, and errors in the logical framework of the model. In a paper by Management 

Solutions [Lamas et al. 2014], the authors identified three categories of model risk sources:
data deficiencies in terms of availability and quality,

–

–

–

–

–

–

–

–

–

–

–

–
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estimation uncertainty or model error, 

model misuse. 

While these classifications differ from one practitioner to another, model risk sources 

tend to lie along three main dimensions: 

data, 

the computational model, 

the interpretation (more generally, the usage) of the model outcomes. 

Given that data is becoming increasingly central to financial models, we find it 

appropriate to divide the data axis into two categories – (1) issues related to dataset 

collection and description, (2) issues related to data-processing, where the raw data 

is treated or transformed before being used in computational models. Additionally, 

finance practitioners continue to build and rely on computational models, and so we 

divide the model risk sources within the computational model axis in two categories 

– (1) model construction related sources, i.e., issues related to the model development 

at the abstract level, and (2) model implementation related sources, i.e., issues dealing 

with the practicalities of software and hardware. With this, we propose the following 

classification of model risk sources.

1. Dataset Issues: These sources refer to risk sources that practitioners are exposed to 

during dataset collection and description processes.

2. Data Processing Issues: These are risk sources that appear during the transformation 

of raw data to make the datasets more ‘model friendly.’

3. Model Construction Related Issues: These sources of model risk specifically consider 

issues associated with the development of the model algorithm, and not with the prac-

ticalities of the model implementation.

4. Model Implementation Related Issues: These model risk sources refer to problems 

linked to the practical implementation of the model, including software and hardware 

limitations.

5. Model Interpretation Related Issues: This category of model risk sources deals with 

issues linked to the usage of model outcomes for decision-making processes.

While this proposal is based on literature review and personal experience, it can be used 

to initiate discussions for better model risk management. In Section 3, we provide a detailed 

explanation of these categories along with examples in each category that help justify our 

proposed list. Though the examples lie within the context of market-data based SRMs, the 

list applies to all types of models (e.g., forecasting, optimization models, inventory man-

agement models risk models, pricing models, portfolio optimization models) that use data 

and computational tools. This proposed classification aims to create dialogue between the 

modelers and risk managers, with the intent of identifying major model risk sources within 

different processes and (hopefully) mitigating model risk.

Systemic Risk Measures

To highlight the model-risk sources present in SRMs, we selected two widely used 

market-data based SRMs, which we briefly describe here.

Both SRMs do not consider the cause of the shock that causes a collapse, and simply 

consider that the bank or the market has had an event which caused its market value 

to fall. The event at a bank could be due to realization of the systematic risk (broader 

–

–

–

–

–
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trend of market behavior), or unsystematic risk (specific to the company, e.g., inventory 
problems, cash mismanagement, local bank runs). The event at the market could be due 
to macro-announcements (e.g., pandemic lockdowns, war, trade sanctions, supply chain 
restrictions). While we focused on SRMs, the analysis of the model risk can be applied to 
most computational models, including forecasting and risk management.

i. Marginal Expected Shortfall

The MES of a bank is defined as the average performance of the bank when a refer-
ence market index is in its left tail [Acharya et al. 2010, Brownlees and Engle 2012, Idier 
et al. 2013]. Thus, it looks at the exposure of the bank to market falls. Mathematically:

MES R R VaRi t i t m t m t, , , ,( ) ( ) .  (1)

Here, Ri,t and Rm,t represent the price returns of the bank i and the market m  
at time t. [x] is the expectation value of x. VaRm,t( ) is the Value-at-Risk (VaR) of the 
market at confidence level , and is defined as the maximum possible loss, whose proba-
bility is within a pre-defined confidence level over a predefined time horizon [Hendricks 
1996, Holton 2003, Pasieczna 2019]. In a Monte Carlo (MC) setup like ours, the MES of 
a bank is the average simulated returns of the bank over the MC iterations satisfying the 
condition that the market’s simulated returns are below the simulated market VaR.

ii. Delta Conditional Value at Risk

and Brunnermeier 2008, Castro and Ferrari 2014]. As the name suggests, it looks at the 
change in the CoVaR, defined as the market VaR conditional on an event at the bank. 
Mathematically:

, , , ,( ) (0.5)

, ( ) ( ) ( ).i t i t i t i tm R VaR m R VaR

i t t tCoVaR CoVaR CoVaR  (2)

Here, , , ( )
( )i t i tm R VaR

tCoVaR  is defined as the VaR of the market m at confidence level 
when the returns of the bank i are at their VaR (confidence level ). 0.5 implies 

the market risk (defined through the market VaR) changes when the bank crashes. While 

2020], we use a slightly different approach where we compute the market VaR over a cer-
tain range (defined as 1% = 0.5% of the total MC iterations) of simulated market returns 

0.005) of the bank’s simulated returns.

Data Description

Our chosen list of banks was a subset of the banks considered systemically important 
and directly supervised by the European Central Bank (ECB). ECB regularly updates 
and publishes the full list online along with criteria for significance [European Central 
Bank 2021]. These banks function in countries which have adopted the Euro as their 
official currency, or whose currencies are pegged to the Euro (as is the case of Bulgaria).  
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We had collected the data in August 2021, when the ECB supervised 114 banks, of which,  
we kept 47 banks for study. The reasons for rejecting the remaining institutions were una-
vailability of data in Bloomberg, unlisted (or pending listing) on the market exchanges,  

of banks along with their grounds for significance is provided in Table 1.
Price and outstanding shares data were obtained using the Bloomberg terminal 

[Bloomberg L.P. 2021]. Whenever possible, the data for each bank began on the first of 
January 2000, implying a history of slightly over 20 years until August 2021. Since the 
list of banks is static, based on the supervised list in August 2021, we expect survivorship 
bias in the dataset, and we discuss its implications in an example (Section 3.A.ii).

Computational Methods

This section describes the computational methods used to estimate the MES and 

used as the reference market index in the SRMs, and the second describing the Monte 
Carlo process to compute the SRMs.

i. Self-built market index

Here, a self-built market index was used as a reference market index for the SRMs. This 
index is constructed from the 47 banks described in Table 1, using the following steps:
 – For every day within the simulation period, compute the market capitalization for 

each bank as the product of its last known outstanding shares and price.
 – Add the market capitalization over all banks present on that day.
 – Normalize this aggregated market value by dividing it using a divisor.

comp
mcap ( )

index .
divisor

d
ii

d
d

d  (3)

Here, indexd is the value of the index, copmd is the composition of the index, mcapi(d) 
is the market capitalization of bank i, and divisord is the divisor value on day d. The miss-
ing price and outstanding shares values were forward filled (last known data used) for the 
market index, as it represents the amount of wealth generated by these banks.

The divisor was reconstructed each time a new bank enters the market and used from 
the following day. This was necessary to ensure that the market index only takes past 
data into account. The first day was skipped for every bank in the index. Additionally, the 
starting value of the divisor was chosen such that the index begins with a value of 100 
points. The expression for updating the divisor is:

1

comp
1

comp

mcap ( )
divisor = divisor ;

mcap ( )
d

d

ii

d d

ii

d

d
  (4)

1

2
comp

1divisor = mcap ( 1).
100

d

d i

i

d

  (5)
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There are two advantages to this index – (1) the start date of the market index is the 

first simulation date of the banks (01/01/2000), and (2) the index fully describes the 

movements of the banks and contains no external information. However, as mentioned 

earlier, we expect the presence of survivorship bias in the dataset, thereby impacting the 

perceived index performance (see Section 3.A.ii for its impact).

ii. Computational algorithm for SRMs

We use a Monte Carlo (MC) approach to estimate the two SRMs. MC techniques 

are used in simulating problems with uncertainty, and so are quite apt for risk analysis 

[Savvides 1994, Glasserman et al. 2000, Pasieczna 2019], including SRMs [Lehar 2005, 
Glasserman 2005, Minderhoud 2006, Siller 2013, Koike and Hofert 2020]. Since our 

aim is to identify model risk sources, as opposed to the estimation of SRMs or their 

model risk, we opt for a simplistic MC scheme to emphasize the risk associated with the 

mismanagement of model risk sources. Except in Section 3.C.i, price returns of the bank 

or the market are defined as logarithmic returns. The algorithm consists of two steps: 1) 

estimation of the distribution of price returns using the past data, and 2) generating future 

returns using the estimated distribution, from which we estimate the SRMs:

1. Estimation of price returns distribution: For each day of the simulation period, we use 

a rolling window (length 250 trading days, approximately 1 year) to estimate the price 

returns distribution:

We estimate the mean, standard deviation of the returns of all banks and the mar-

ket index. The correlation values between the returns of each bank and the market 

index are also estimated.

An additional degrees of freedom parameter (proxy for the tailedness) is estimated 

for the returns of all banks and the market index when the Student’s-t distribution 

is used.

2. Estimation of SRMs with the estimated distribution:

Using a Gaussian or Student’s-t distribution with the parameters estimated, we 

generate 20,000 future price returns (except in Section 3.D.ii) for each bank and 

the market index using a bivariate process [Brownlees and Engle 2012]:

 (6)

 (7)

Indices i, m, n and d refer to the bank, the market index, the MC iteration, and  

the simulation day, respectively.  are the simulated returns for the next simula-

tion day, d +1. µi/m,d, σi/m,d and  are the estimated means, the estimated standard 

deviations and drawn random numbers from a standardized distribution (Gaussian or 

Student’s-t) respectively.ρim,d is the correlation between the returns of the bank and 

market index.

MES estimation (confidence level α): Estimate the VaR of the market as the αth quan-

tile from the simulated market index values. The MES of a bank is the average of the 

simulated returns of a bank when the simulated market returns were below this VaR.

–

–

–

–

–
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ΔCoVaR estimation (confidence level α): For a given bank, consider all simulations 

of the market index returns, where the simulated returns of the bank were between 

the VaR at α + ε and α – ε quantiles. The VaR at α confidence level of these selected 

market returns is the stressed CoVaR. The unstressed CoVaR is similarly computed 

as the VaR at confidence level α of the selected market returns, where the bank’s 

simulated returns were between the 0.5 + ε and 0.5 – ε quantiles. The difference 

between the stressed and unstressed CoVaRs is the ΔCoVaR. ε was set to 0.005  
(1% of all MC iterations are selected), and the impact of changing this value is dis-

cussed in Section 3.C.ii.

Here, the missing data points were not treated (Section 3.B.i discusses the impact of 

the treatment type), and the distribution parameters were estimated by dropping these 

points. For statistical stability purposes, we required a minimum of 80% of available data 
within the rolling window for computing the mean, standard deviation and tailedness 

parameters, and a minimum of 60% for the correlation parameter. If this was not satisfied 
for a particular bank on a given day, no SRM was estimated for that bank on that day.  

For the Student’s-t distribution, we had to impose a minimum value of 5 for the degrees 

of freedom parameter. The impact of this choice is discussed in Section 3.D.i.

Research Results and Discussion

Model Risk Sources: Examples using systemic risk measures.

This work is based on case studies that show the impact of different sources of model 

risk on the results obtained. The proposal to classify the sources of risk of the model was 

presented on the basis of our own research and a literature review.

The case studies focus on the quantification of two measures of systemic risk - Mar-

ginal Exceeded Shortfall (FEM) and Delta Conditional Value at Risk (ΔCoVaR), whose 
values are estimated using the Monte Carlo simulation method. The data used for the 

analysis includes market data on banks monitored by the Logistics company on the exam-

ple of European Central Bank.

Dataset Issues

Data collection and description can be huge sources of model risk, depending on how 

the data is used. Both issues can be due to technological limitations (poor measurement 

tools), the nature of rare events, or human error (e.g., negligence). Poor quality data, for 

example, can make it extremely hard to extract the necessary information for practical use. 

Models that are built on bad data tend to give unreliable results, referred to in data science 

fields as ‘Garbage In – Garbage Out’ [Kilkenny and Robinson 2018]. Incomplete or miss-

ing data can adversely impact models that rely on inferring statistical properties of certain 

variables from the data. Just like quality and the completeness of data, documentation and 
description of the dataset is important. If the datasets are incorrectly described, then models 

built on those datasets will be exposed to high model risk. Irrelevant data might be used 

during model construction, acting as another potential source of model risk.

Data collection can also be subject to biases, such as survivorship bias where the data-

set reflects only the entities that ‘survived’ until the time of the data collection process 

–
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[Gilbert and Strugnell 2010]. For example, if we collect historical market prices of the 
S&P-500 companies based on today’s composition, then our dataset does not contain the 

companies removed from the index. 

This leads to under-representation of companies that performed worse, and models 

built on this dataset are exposed to this bias. Financial data has been known to be subject 

to other types of biases as well [Bryant et al. 2019, Zhong and Hamilton 2023].
Since computational models are built on datasets, then dataset issues are a major 

source of model risk. Managing model risk associated with this source requires a huge 

effort on the part of banks, mainly on the side of data collection (either directly from 

markets, or from data providers), maintenance (includes monitoring and when possible, 

correcting, for any potential bias) and documentation of the datasets. This is a non-triv-

ial problem, and many banks tend to have dedicated data teams for leading this effort. 

Data management is a rapidly evolving domain, and risk managers need to consider and 

account for the ever-growing need of researchers and practitioners for more data for bet-

ter computational models [Dicuonzo et al. 2019].
To further underline the need for better data management, we study two specific 

examples – (1) poor data quality due to missing data, and (2) survivorship bias. In the first 

example, we show the deviations of the MES at 95% confidence levels for three banks 
as a function of missing data. In the second example, we show how the reference market 

index with survivorship bias has a slightly optimistic outlook when compared to another 

reference market index without this bias.

i. Poor data quality

This example highlights the impact of missing data on the MES estimates (95% con-

fidence levels), using three banks: 

Crédit Agricole S.A. 
Deutsche Bank AG, a 

Banco Santander S.A. 

First we estimated the MES using all available data, then 5% of all price data was 
randomly removed before recomputing the MES, and, finally, 10% of the total data was 
randomly removed for the third MES computation. Figure 1 shows the histograms of the 

deviations (in relative units with respect to the MES computed with all data) of the MES 

at 95% confidence levels for the three banks when 5% (orange) or 10% (green) of the 
data was removed.

We observe that the green histograms that have 10% missing data have more spread 
(mean: –0.26%, std: 5.09%, min: –22.34%, max: 13.00%) than the orange histograms 
which have 5% missing data (mean: 0.61%, std: 3.22%, min: –19.14%, max: 15.74%). 
This indicates that the model risk (defined as variability of the estimates) increases with 

the percentage of missing data. As price data goes missing, estimation of the statistical 

properties of the returns becomes unreliable, leading to an increase in the MES deviations. 

This has important consequences for SRMs. For example, if one were to choose the most 

significant banks from a larger dataset, then with just 5% of missing data (selected 5,259 
data points out of 5,536) we observed variability of about 3%. With 10% of the missing 
data, the observed variability reaches about 5%. The perceived relative risk contributions 
of the banks can vary quite significantly, leading to an unreliable ranking of the banks’ 

–

–

–
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systemic importances. Usage of the results by regulatory bodies without accounting for 

the associated model risk can lead to the regulators applying inappropriate penalties on 

less risky banks or being lenient on more risky banks.

i. Survivorship bias

This second example related to dataset issues deals with the issue of survivorship bias 

and discusses the implications, in the context of the perceived performance of the market 

indices. The dataset used in this work consists of market prices and the outstanding shares 

amount of 47 banks, which form a subset of systemically important banks supervised by 

the European Central Bank (ECB).

As mentioned earlier, the dataset reflects the banks supervised in August 2021, and 

does not consider the temporal change of this list. Hence, we expect survivorship bias to 

be present. To understand why, let us consider a bank that was supervised by the ECB 

prior to the 2015–2016 stock market sell off, but not supervised (became less significant) 

after the crash. We would not have downloaded price data about this bank. A reference 

market index built without this bank would not see the downward performance of the 

bank, the consequence of which is that this index would outperform another index that 

considers the temporal evolution appropriately. This perceived outperformance is an arte-

fact of how the dataset was built and is the outcome of the survivorship bias present.

In the left subplot of Figure 2, we compare the temporal evolution of the self-built 

market index (Section 2.D.i) that contains the survivorship bias and the Euro Stoxx Banks 

index, or SX7E (QONTIGO, 2011) without this bias. The data for the SX7E index was 
obtained from https://www.investing.com/ and begins on 28 December 2012, which 

implies a limited history for comparison of the two indices. Over the common history, we 

 

Figure 1. Relative differences of MES at a 95% confidence level from the MES computed with the 
best available data 

Rysunek 1. Względne różnice MES obliczonego na podstawie najlepszych dostępnych danych  
z MES obliczonym na podstawie brakujących danych 

Source: banks chosen: ACA (Crédit Agricole S.A.), DBK (Deutsche Bank AG) and SAN (Banco Santander, SA)
Źródło: wybrane banki: ACA (Crédit Agricole S.A.), DBK (Deutsche Bank AG) i SAN (Banco Santander, SA)
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observe similar behaviors for the two indices, with correlations between the respective 

log-returns reaching 97.76%. The self-built index seems to be a good proxy of the market 
index and has more available data.

Nonetheless, the self-built index outperforms the SX7E index, hinting at a non-neg-

ligible impact of the survivorship bias. To further analyze this issue, we computed the 

cumulative returns of both indices over 4 periods: 

sell-off of 2015–2016 [Irwin 2015, Li et al. 2015], 
recession of 2018 [DW 2019], 
COVID crash [Haldar and Sethi 2021], 
the entire overlapping history. 

The results are presented in the bar plot on the right subplot of Figure 2. The differ-

ence bar (in green) corresponds to the perceived outperformance of the self-built market 

index over the SX7E index. We observe that the self-built index consistently beats the 
SX7E, with the difference being the smallest (but still positive) during the Covid crash 
period that is much closer to the data collection time.

Despite the remarkable similarity over the common history, we expect the impact 

of survivorship bias to be more pronounced before the start of the SX7E index since 
the index compositions would have differed much more. There are consequences on the 

evaluation of the SRMs as well, since the market index appears less risky, leading to an 

under-estimation of the network stress. This is particularly important in the context of the 

development of new SRMs, and the back-testing of the previous crises. Having survivor-

ship bias might cause the SRM to help ‘avert’ a particular crisis, simply because the data 

consists of banks that have already averted (survived) the crisis.

–

–

–

–

 

Figure 2. Comparison of the self-built market index that contains survivorship bias and the Euro 

Stoxx Banks index that does not contain survivorship bias

Rysunek 2. Porównanie samodzielnie zbudowanego indeksu rynkowego, zawierającego błąd prze-

żywalności, z indeksem Euro Stoxx Banks

Source: own work based on market index with Euro Stoxx Banks indexwn work based on market index with Euro Stoxx Banks indexwork based on market index with Euro Stoxx Banks index

Źródło: opracowanie własne na podstawie indeksu rynkowego z indeksem Euro Stoxx Banks
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Data Processing Related Issues

Before being used in models, some type of data processing might be done to make 
the data more ‘model friendly.’ This step introduces more potential sources of model 
risk, and practitioners need to be able to deal with them. Some examples of data 
processing steps include dealing with missing datapoints, correcting or flagging erro-
neous datapoints, re-arranging data into a more appropriate form, and performing small 
transformations on the dataset. If datasets are small, then manual verification, even if 
slightly cumbersome, of the data processing steps is possible, and the risk associated 
with this stage can be minimized. However, as datasets become larger, performing tasks 
manually become intractable, with many steps tending to become automated, leading to 
an increase of model risk.

To better understand this stage, consider the problem of detecting and flagging large 
price jumps in a stock’s daily time-series. If the jump exists for a day, it might most 
likely indicate that there is an error in the data, less likely reflect an extreme event, 
and flagging this jump as an error would require confirmation and verification. If the 
jumps are uncommon, a human might be able to verify each jump case by case and 
flag them manually. However, if the jumps are too many, the problem becomes intrac-
table for manual verification, and practitioners turn to automation with some statistical 
metric (such as percentage of datapoints flagged as errors). Automation then must deal 
with having either too many datapoints flagged as errors (missing out true tail events)  
or having too many erroneous datapoints.

When the data processing stage becomes automated, more sources of model risk 
are introduced, typically in the form of computer bugs. In an ideal case, these bugs are 
caught and managed when the data processing steps are applied on many tests. Howev-
er, bugs can pass all internal controls, and their impacts become known only when the 
transformed data is used for model building or during an audit. A well-known example 
is the rounding error bug of the Vancouver Stock Exchange Index [Nievergelt 2000], 
where small errors in rounding accumulated to a very large tracking error (around 50%) 
of the published index value with respect to the actual index value, causing the index 
to appear to be falling instead of growing. Using the published index value in computa-
tional models would indicate poor market performance (despite an increase in the value 
of daily transactions).

Model risk management at this stage typically depends on whether the data pro-
cessing is manual or automatic. If it is manual, rigorous checks by different data ana-
lysts need to be implemented with very stringent controls. If automation is used, then 
good software practices would additionally need to be implemented. As is the case 
with datasets, computer programs need to be documented, tested, and released. Mon-
itoring will additionally be required to ensure that the data processing programs 
remain robust to newer, and untested, circumstances of the real world. Implementing 
these practices comes at a cost to banks, both in terms of money and time, but the risk 
associated with bad implementation is typically much higher. To highlight the impact 
of the data processing stage, one example is provided below, where we compare 
the MES at a 95% confidence level for one bank computed with three ways of dealing 
with missing price data.
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i. Dealing with missing price data

In this case study, three options are considered to deal with missing price data: 
 – drop the points, 
 – forward-fill the prices (use the last available information) before estimating the price 

return statistics, 
 – back-fill the prices (use the next available information in the past) before estimating 

the price return statistics. 
All three approaches have problems, which manifest in the estimation of the SRMs. 

If we drop the points, then depending on the number of missing datapoints, we might 
end up with insufficient data, or unreliable statistics. If we forward-fill the prices,  
then the price returns will be zero for all the missing points, which might cause the vari-
ance of the returns to be lower. Finally, if the missing time-series data is back-filled, 
then the models are provided information before it should be available, leading to leaked 
information from the future (breaks in causality). The third approach should ideally never 
be used for SRMs, since it is possible to gain information about a market crash before the 
actual crisis. It is included only for teaching purposes.

We estimated the MES at a 95% confidence level for HSBC Bank Malta p.l.c. using 
these three options. Figure 3 contains: (left) the prices (in red), along with a rolling 
250-day count (in black) of available price data, and (right) the MES curves for the three 
approaches of dealing with the missing data. The plots are zoomed in on the period from 
July 2008 to January 2010. We see that there are more holes between August 2008 and 
October 2008, the period containing the September 2008 crash, and the MES curves 

 

Figure 3. Impact of dropping, forward-filling, or back-filling missing datapoints on the MES 
at a 95% confidence level. Left subplot: Prices (red) and rolling count of available points (black). 
Right subplot: MES computed by dropping (blue), forward-filling (orange) or back-filling (green) 
missing data 

-

Source: chosen bank HSB (HSBC Bank Malta p.l.c.)
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indicate the perceived exposure of the bank to the market fall. The three curves are quite 

different in this period, with the MES computed using the back-fill option (green curve) 

indicating the largest risk. However, after January 2009, the MES with the forward-fill 
option (orange curve) indicates the largest risk. The MES curve computed with the drop 

option (blue curve) typically follows one or the other. The interpretation is as follows. 

Since the back-fill option (green) has information about the price drop in the past, the 

perceived risk is higher before (and during) the fall. Similarly, once the price starts pick-

ing up, the information is available before, and the risk drops. With the forward-fill option 

(orange), there is a delay in the information availability due to the smaller perceived vari-

ance of the returns, and so the curve lags. The MES computed with the drop option (blue) 

reacts to the market prices as they are available, and so oscillates between the two.

If we ignore the back-fill option on the argument of causality, we might be tempted 

to conclude that the drop-option is the better option over the forward-fill option, but that 

is not always clear, and the better option depends upon the use case. If we are estimating  

a market index, then using the last available price might be the best option, since the 

market index reflects the amount of wealth created. However, if we are trying to estimate  

the statistics of the price returns, then dropping too many datapoints might lead to statis-

tics that vary more, whereas forward-filling prices leads to standard deviation estimates 

that are smaller. Depending on the model requirements, the data needs to be processed 

correctly at this stage.

Model Construction Related Issues

During the abstract model construction phase, just before implementation, practition-

ers are exposed to many sources of model risk. The construction stage that we discuss in 

this section refers to the development of the algorithm (dealing with abstract aspects as 

opposed to the model implementation dealing with practical aspects) as part of the mod-

eling process. This stage can equivalently be thought of as the model conception stage, 

where decisions regarding the data usage, algorithmic steps and expected model out-

comes are made, without regard to the practicalities of software and hardware choices.

During the abstract development of the models, practitioners might inadvertently 

incorporate some biases within the models. These biases might be within the data itself 

(especially pertinent for machine learning algorithms, where the bias might be hidden in 

the training set), or in the algorithmic steps. For example, Google’s Sentiment Analyzer 

gave negative or positive sentiment values depending on the sociocultural information 

mentioned in the input [Thomson 2017], which can be considered offensive and dis-

criminatory against certain groups. These can have huge consequences when the models 

exposed to such biases are used to help decision-making.

Another major source of model risk during this phase lies in the assumptions made 

by the practitioners. These assumptions might be well accepted, such as the efficiency of 

markets, (all information is incorporated in market prices), or less universally accepted, 

such as static seasonality assumptions (ignoring the dynamic or shifting nature of the 

cycles) related to the distribution choice for an asset’s returns. Depending on how appro-

priate the assumptions are in the real world, the model risk can be considered high or 

low. For example, during periods of high volatility, financial markets tend to become 
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correlated [Junior & Franca, 2012]. A model that assumes the relative independence of 
the markets may not accurately capture the dynamics during stressful periods, and thus 

develop a higher model risk. Approximations might fail for mathematical limitations as 

well, where certain phenomena are simply not captured.

Model inapplicability, i.e., the application of a model to a problem out of its devel-

opment context, is yet another source of model risk for practitioners. For example, the 

Black-Scholes-Merton option pricing model was developed for European-style options 

(the right to exercise on the settlement date), and not for American-style options (the right 

to exercise at any time before the settlement date). If we apply the model on American-

style options, then the model might fail to describe certain options exercised earlier.

Uncertainty in the model parameters, sometimes referred to as estimation risk 

[Klein and Bawa 1976, Lewellen and Shanken 2000], also contributes to model risk. 
Quantifying this risk typically involves quantifying the uncertainty in the model’s 

outputs due to the uncertainty in the model’s parameters. Parameter estimations can 

come from completely different approaches, such as using bootstrapping techniques 

[Christoffersen and Gonçalves 2004], or by building different variants of the models 
[Danielsson, et al., 201]. For example, consider a model that uses a historical demand 
of ATM cash to predict the minimum required cash levels to be maintained in future. 

A change in a parameter, such as the historical window length, causes variation in the 

estimation of the distribution of the cash demands, and consequently, the model outputs 

might change. Managing this source of model risk requires stringent model develop-

ment practices and documentation of every choice that enters the model. Practitioners 

need to be able to envisage and find ways to circumvent biases in the datasets and the 

model development process. At the company level, this would typically involve setting 

up a model risk management team, whose sole responsibility is to ensure proper model 

development practices. Model risk management is a relatively new field, with much 

active research still being done [Garro 2020]. As financial institutions become more 
dependent on computational models, and use larger datasets, the need for model risk 

management becomes more important.

To highlight how important model risk management is at this stage, we study two 

examples – (1) the choice of price returns, and (2) the choice of a parameter value in the 

estimation of ΔCoVaR. In the first example, we study the impact of logarithmic or relative 
returns on the MES at a 95% confidence level for three banks. In the second example, 
we look at the ε parameter used in our implementation of estimating the ΔCoVaR at the 
95% confidence level for two banks. This parameter controls the number of MC itera-

tions around a required quantile (VaR or median) of the bank, over which the VaR of the 

market is estimated.

i. Choice of price returns

Many works in finance typically use logarithmic (natural base) returns and relative 

returns. Below are their definitions, with p(t) the price, η(t) the (natural) logarithmic 

return, and rr(t) the relative return at time t:
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If we assume that prices are non-negative, with some exceptions [Fernandez-Perez et 
al. 2023], relative returns are always greater than or equal to –1. Due to their very nature, 
logarithmic returns will satisfy this requirement, since by Eq. (10):

( )
lim ( ) 1

l

r
r t

r t  (11)

Thus, by using logarithmic returns, ‘real’ prices are effectively lower bound at 0. 
Additionally, we have:

log 1 ( ) ( )l rx x r t r t  ( 12 )

Thus, relative returns are the first order approximation of the logarithmic returns 
under the Taylor’s expansion, and so using logarithmic returns appears to make good 
mathematical sense for negative price changes. However, logarithmic returns do not 
always behave well with respect to positive price changes. Consider the following 
log-returns:

(–3, –2, –1, 0, 1, 2, 3)
By Eq. (10), these translate to the following relative returns:
(–0.9502, –0.8647, –0.6321, 0, 1.7183, 6.3891, 19.0855)
This implies that if we use symmetric distributions for logarithmic returns with  

a given probability of losing 95%, then we end up with the same probability of gaining 
1909%. These effects are naturally more pronounced in heavy-tailed distributions like the 
Student’s-t distribution. Additionally, relative returns are more intuitive.

In Figure 4, we compare the MES at the 95% confidence levels during the period from 
January 2007 to December 2008 for three banks: Bank of Valletta plc, BPER Banca S.p.A. 
and Banca Popolare di Sondrio, Società Cooperativa per Azioni. The MC algorithm under 
the Gaussian approximation was used with either logarithmic returns (blue) or relative 
returns (orange). The curves are plot in relative returns units for comparison. 

We observe a small non-zero impact on the MES curves due to the choice of type of 
price returns. For some points, the risk perceived by logarithmic returns is higher (BPSO, 
between July 2007 and July 2008), whereas at some other points, the risk perceived by 
relative returns is higher (BPE, April 2007 to July 2007).

From these curves, it is difficult to say which type of returns have a higher per-
ceived risk. While it makes sense to use logarithmic returns for SRMs (since SRMs 
typically focus on negative price changes), there may be situations when relative 
returns are more appropriate (say if we are interested in looking at positive price 
changes only). Model developers need to analyze the effects of their choice depending 
on their use cases.
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ii. Choice of 

This second example considers the model risk due to the estimation risk of a param-
, which 

defines the range around a desired quantile of a bank’s simulated price returns, over which 
the market VaR (CoVaR) is estimated. If the parameter value is larger, a greater number 
of MC iterations are selected for estimating the CoVaR, bringing a higher stability (lower 
uncertainty) to the value. However, it also implies iterations that are not necessarily close 
in value to that of the desired quantile have been selected.

Figure 5 contains a visual representation of the selection process to better understand 
the algorithm. The blue line is the cumulative distribution function of the bank, and 
the blue diamond represents the VaR at the desired confidence level set to 95% (black 
dashed-dotted line at 5%) for this illustration. Three values of  are studied here: 0.0025 
(orange straight), 0.005 (green dashed) and 0.01 (red dotted). The ranges thus are 0.005 
(100 iterations out of 20,000), 0.01 (200 iterations out of 20,000) and 0.02 (400 itera-
tions out of 20,000) around the desired quantile. The CoVaR is then computed as the VaR 
of the market returns over iterations where the bank’s returns are between the selected 
price returns. Note that  ensures a symmetric range along the probability distribution (y) 
axis but does not guarantee symmetry along the price returns (x) axis. A larger (smaller) 
range implies that more (less) iterations are selected increasing (decreasing) the stability  
of the final CoVaR, but the required range of the bank’s returns is much larger (smaller) 

 

Figure 4. Impact of choice of type of price returns (logarithmic vs. relative) on the MES at 95% 
confidence levels for three banks. Chosen banks: BOV (Bank of Valletta plc), BPE (BPER Banca 
S.p.A.), BPSO (Banca Popolare di Sondrio, and Società Cooperativa per Azioni)

Banca S.p.A.), BPSO (Banca Popolare di Sondrio, Società Cooperativa per Azioni)

Source: chosen banks: BOV (Bank of Valletta plc), BPE (BPER Banca S.p.A.), and BPSO (Banca Popolare 
di Sondrio, Società Cooperativa per Azioni).

(Banca Popolare di Sondrio, Società Cooperativa per Azioni).
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and contains iterations much further away from (much nearer to) the required quantile 

value, represented as a blue diamond.

Thus, the value of ε impacts ΔCoVaR estimates in two ways: numerical stability (due 
to the number of iterations chosen), and relevance of the selected points. In Figure 6, we 

highlight the numerical stability aspect of the choice. To do so, we first computed the 

ΔCoVaR using the three ε values for two banks: BNP Paribas S.A. (BNP) and AXA Bank 
Belgium SA (CS). Then a five-day exponentially weighted moving average was computed 

to obtain a ‘trend.’ Deviations from this trend are provided in the figure. As the value of 

ε becomes smaller (larger), fewer (more) iterations are selected, decreasing (increasing) 

the numerical stability, and causing larger (smaller) fluctuations from the trend. The green 

histogram (ε = 0.01) has the narrowest distribution, representing the smallest fluctuations 

(highest stability) with respect to the others, whereas the blue histogram (ε = 0.0025) has 

the widest distribution, representing the largest fluctuations (lowest stability). The orange 

histogram (ε = 0.05) lies in between. As can be seen, choosing a particular value of  

a parameter has a certain model risk associated with it. The model risk highlighted here 

 

Figure 5. Visual representation of how samples are chosen for CoVaR. Given a distribution func-

tion (blue) of a bank, and a desired quantile (black dashed-dotted line), we select samples that lie 

between the desired quantile plus ε and the desired quantile minus ε. MC iterations where the bank’s 

price returns lie between these limits (x-axis) are selected. The CoVaR is estimated as the average 

of the market returns of these selected iterations.

Rysunek 5. Wizualna reprezentacja sposobu wyboru próbek dla CoVaR. Biorąc pod uwagę funkcję 
rozkładu (niebieski) i pożądany kwantyl (czarna linia przerywana), wybieramy próbki, które leżą 
pomiędzy pożądanym kwantylem plus ε i pożądanym kwantylem minus ε. Wybierane są iteracje 
MC, w których zwroty cenowe banku mieszczą się w tych przedziałach (oś x). CoVaR szacuje się 
jako średnią zwrotów rynkowych z wybranych iteracji.

Source: chosen banks: BOV (Bank of Valletta plc), BPE (BPER Banca S.p.A.), and BPSO (Banca Popolare di 

Sondrio, Società Cooperativa per Azioni).

Źródło: na przykładzie wybranych banków: BOV (Bank of Valletta plc), BPE (BPER Banca S.p.A.), BPSO 
(Banca Popolare di Sondrio, Società Cooperativa per Azioni).
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is linked to the model risk of the MC process, since one way to increase the stability is 

to increase (by a large amount) the number of MC iterations, while choosing a value of ε 

that is as small as possible.

Model Implementation Related Issues

The model risk sources considered here refer to the practical aspects of the modelling 

process. In the context of computational modelling, these sources usually appear in the 

form of computer bugs. Bugs can be introduced due to multiple factors: human error (bad 

programming style, misinterpretation of algorithms, etc.), faulty assumptions about the 

data and algorithm (data type mismatch, duplicate data, assumptions about edge cases), 

or software and hardware limitations (use of ‘alpha’ or ‘beta’ code, error mishandling, 

security restrictions, insufficient available memory, etc.).

Bug-free programs are extremely difficult to implement [Simmonds, 2018] and prac-

titioners need to understand and anticipate the potential problems in code usage. As more 

ready-made computational and statistical packages are developed for users’ convenience, 

the model risk that users become exposed to increases. This can happen if the documenta-

tion of the implementation is incomplete/incomprehensible, or if the user does not spend 

time understanding the documentation. Black-box implementations, where the imple-

mentation is typically opaque to the user, tend to amplify these issues.

Computational complexity also increases model risk. Complexity refers to the ability 

of programmers to comprehend and debug a computer program. As a program becomes 

more complex, the chances of having bugs in the code increases. While the complex-

ity of an implementation depends on the choice of language (high level language pro-

 

Figure 6. Histogram of the fluctuations of the ΔCoVaR at the 95% confidence levels around a 5-day 
exponentially weighted mean for different values of ε. Chosen banks: BNP (BNP Paribas S.A.) and 
CS (AXA Bank Belgium SA)
Rysunek 6. Histogram wahań ΔCoVaR przy 95% poziomie ufności wokół 5-dniowej wykładniczejΔCoVaR przy 95% poziomie ufności wokół 5-dniowej wykładniczejCoVaR przy 95% poziomie ufności wokół 5-dniowej wykładniczej 
średniej ważonej dla różnych wartości ε. Wybrane banki: BNP (BNP Paribas S.A.), CS (AXA Bankε. Wybrane banki: BNP (BNP Paribas S.A.), CS (AXA Bank. Wybrane banki: BNP (BNP Paribas S.A.), CS (AXA Bank 
Belgium SA)

Source: chosen banks: BNP (BNP Paribas S.A.) and CS (AXA Bank Belgium SA).
Źródło: na przykładzie wybranych banków : BNP (BNP Paribas S.A.), CS (AXA Bank Belgium SA).
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grams might be easier to debug than assembly level language programs), bugs are found 

everywhere, even in common spreadsheet software. For example, in 2012, JP Morgan,  
a prominent investment bank, lost over 6 billion dollars due to a small bug in their Excel 

implementation [Pollack 2013, EuSpRIG 2013].
During this stage, practitioners make implementation choices (as opposed to deci-

sions in methodology) based on certain preliminary tests. These decisions are made to 

make the problem tractable, deal with bugs, have desirable outcomes in edge cases, or 

limit improbable scenarios (realistic scenarios). When certain choices are inappropriate 

in situations not considered in the tests, the model risk increases.

In addition, computer programs have hardware limitations, which, if not managed 

appropriately, can increase model risk. For example, memory issues might occur while 

performing large computations on a computer, which might lead to faulty results. Com-

puters work in binary, requiring floating-point representations [Goldberg 1991] which 
might cause results to vary slightly (practically undetectable) for small runs of the pro-

gram, but aggregate over larger runs.

Managing risk at this stage requires good computer engineering practices, such as 

Cleanroom engineering [Cobb and Mills 1990]. Cleanroom engineering develops the 
software under statistical quality control by: (a) specifying statistical usage, (b) defining 

an incremental pipeline for software construction that permits statistical testing, and (c) 

separating development and testing (only testers compile and execute the software being 

developed). While this setup might seem too extreme for banks, mitigating the risk asso-

ciated with computer bugs might pay out the costs of implementing a similar setup.

We study two examples to underline the importance of model risk management at this 

stage – (1) the choice of the minimum value of the tailedness-parameter in the Student’s-t 

distribution, and (2) the number of MC iterations. The first example looks at the MES at 

a 95% confidence level for three banks when the vmin parameter is altered. The parameter 

controls how heavy the Student’s-t distribution is allowed to be, and thus has an impact 

on the tail events, which causes the MES estimates to vary. The second example analyzes 

the impact of the number of MC iterations on the variation and computational effort of the 

MES at a 95% confidence level for ten banks.

i. Choice of vmin in Student’s-t distribution

While there are different distributions available to describe the observed price returns 

[(McDonald, 1996], as a starting point, practitioners use the normal distribution, since 
it is symmetric and not heavy- or light-tailed. To introduce some heavy-tailed behav-

ior, practitioners sometimes use the Student’s-t distribution, which introduces one extra 

parameter v (called the degrees of freedom parameter) that controls the heaviness of the 

tails. As v approaches infinity, the distribution approaches the normal distribution: the 

smaller the v, the heavier the tails.

In our implementation of the SRMs (Section 2.D.ii), this parameter was estimated on 

historical data, and thus represents the observed heaviness of the tails. Initial tests indi-

cated that when relatively small values of v were used in the MC process to generate price 

returns, we obtained tail scenarios that were unrealistic. On further analysis, we found 

that since the Student’s-t distribution is symmetric, it could generate price returns that 
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were extremely large or small. For practical purposes, we had to set vmin = 5. This imple-

mentation choice was done on a relatively small set of tests, and here we demonstrate the 

choice by reducing and increasing vmin by a factor of 2. We also include the simulation 

with the normal distribution, i.e., v = vmin = vmax = ¥.

In Figure 7, we look at how the MES at the 95% confidence levels changes across four 
values of vmin: 2.5 (reduced by a factor of 2), 5 (choice), 10 (increased by a factor of 2), and 

¥ (normal distribution). The upper subplots look at the MES curves of three banks: AIB 

Group plc, Eurobank Ergasias Services and Holdings S.A. and Sberbank Europe AG. 

The bottom subplots show the ν curves for these banks so that we can understand 
the heavy-tailed nature (smaller values imply heavier tails). Since we expect the Stu-

dent’s-t distribution to be heavy-tailed, the risk (as seen by MES here) is expected (and 

observed) to be larger with this distribution than when the normal distribution (red curve,  

 

Figure 7. Impact of the choice of vmin on the MES at the 95% confidence levels (top subplots) for 
the year 2016. No filtering of minimum risk levels for the MES was done to highlight the some-

times non-physical heavy-tailedness nature of the Student’s-t distribution. Provided in the three 

bottom subplots are the ν values of the banks. 
Rysunek 7. Wpływ wyboru vmin na MES przy 95% poziomie ufności (górne wykresy) dla roku 
2016. Nie przeprowadzono żadnego filtrowania minimalnych poziomów ryzyka dla MES, aby pod-

kreślić czasami nierealistyczne właściwości rozkładu t-studenta. Na dolnych wykresach przedsta-

wiono wartości ν banków.ν banków. banków. 

Source: chosen banks: AIBG (AIB Group plc), EUROB (Eurobank Ergasias Services and Holdings S.A.),  

and SBER (Sberbank Europe AG).

Źródło: na przykładzie wybranych banków:  AIBG (AIB Group plc), EUROB (Eurobank Ergasias Services  
and Holdings S.A.), SBER (Sberbank Europe AG).
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vmin = vmin = ¥) is used. As vmin is set to smaller values, the tails become heavier, and we 

expect and observe the MES curves to move down (losses and thus risk metrics are repre-

sented as negative price returns). Indeed, the green curve (vmin = 10) is above the yellow 
curve (vmin = 5), which is above the blue curve (vmin = 2.5). However, this is true only as 
long as the estimated v is below the vmin. In the case of Sberbank Europe AG (upper and 

lower rightmost subplots), the v parameter is always above 5, and so the yellow and blue 

curves are remarkably similar.

Nonetheless, there are some jumps in the blue curve that make the choice of vmin = 2.5 

questionable. In the case of the first two banks (AIB Group plc and Eurobank Ergasias 

Services and Holdings S.A.), we see exceptionally large jumps that make the MES levels 

positive. While it is possible for MES to take positive values if the bank and market are 

not positively correlated, the fact that these jumps happen only for a few instances in 

an otherwise ‘properly behaving curve’ indicate that these are probably artefacts of the 

implementation. Indeed, when vmin = 5, these jumps are not visible, and hence we chose 
the value of 5 as the minimum value. The jumps are present on the negative side as well, 

albeit much smaller since we used logarithmic returns (see the first example in the previ-

ous section).

This example demonstrates how programmers might make implementation choices. 

The best way to mitigate the risk with these choices is to perform tests on a relatively 

large set of examples to understand the impact of these choices. In this exercise, we were 

‘lucky’ since the jumps are visible, but there might be cases where the impact of computa-

tional artefacts is not visible in any of the tests, and practitioners need to be able to debug 

bugs that appear when the software is released and applied in real-world scenarios.

ii. Impact of number of MC iterations

The second example looks at another implementation decision made due to practi-

cal constraints. Specifically, we study the choice of the number of MC iterations, which 

impacts: (a) the fluctuations of the MES at a 95% confidence level, and (b) the compu-

tational time. In all the other examples provided in this work, 20,000 MC iterations were 

used to estimate the MES or the ΔCoVaR. Preliminary tests guided this choice to optimize 
the tradeoff between the MC uncertainty and computational time.

In Figure 8, we show how practitioners might make the decision. The MES at the 95% 
confidence level was computed for ten banks (names provided in the caption of the figure), 

and for five values for the number of MC iterations (5,000, 10,000, 20,000, 40,000, and 

80,000). In addition, we estimated the computational time in seconds for these ten banks. 

We expect the computational time to increase with the number of iterations. To estimate the 

fluctuations of the MES, we simply looked at deviations from a 5-day exponentially moving 

average. These deviations from the trend are expected to be higher if the number of iterations 

is small. The subplots show: (left) the computational effort measured in seconds as a function 

of the number of iterations along with a quadratic fit, and (right) the mean absolute deviation 

from the trend as a function of the number of iterations for the ten chosen banks.

As expected, the computational effort increases rapidly with the number of iterations, 

with an appropriate quadratic fit. If the quadratic term begins to dominate, then doubling 

the number of iterations would quadruple the computational time. We also confirm our 
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hypothesis that the deviations reduce as the number of iterations increases. However, the 

added benefit of minimizing the fluctuations is reduced as well, since as the number of 

iterations increases, the reduction of the deviations is slower than a linear growth. Thus, 

practitioners are required to make a choice that is a tradeoff between acceptable MC 

uncertainty and acceptable computational time.

This choice is one dictated by available hardware. If a faster computer were available, 

practitioners might be able to push for more MC iterations, whereas practitioners with 

slower computers would be forced to further reduce the number of iterations. There is an 

inherent model risk of the MC process, and this risk propagates through to the SRM esti-

mates due to the choice and available hardware. General approaches (more of a desire) to 

reduce this particular risk include usage of: 

optimized models, so that more computational time is available for the actual  

iterations than for the overhead; 

appropriate models that focus on the variable of interest than anything else; 

low-variance models that target the model risk of MC process itself. However much the 

risk is reduced, implementation decisions will always carry some  risk with them.

–

–

–

 

Figure 8. Left: Computational effort (in seconds for 10 banks) as a function of the number of MC 

iterations. Right: Fluctuations of the MES at the 95% confidence levels as a function of the number 
of MC iterations for the ten chosen banks around the 5-day exponentially weighted mean. 

Rysunek 8. Po lewej: Nakład obliczeniowy (w sekundach, dla 10 banków) jako funkcja liczby itera-

cji MC. Po prawej: Wahania MES (przy 95% poziomie ufności jako funkcja liczby iteracji MC dla 
dziesięciu wybranych banków) wokół 5-dniowej średniej ważonej wykładniczo. 

Source: chosen banks: ACA (Crédit Agricole S.A.), BBVA (Banco Bilbao Vizcaya Argentaria, S.A.), BNP (BNP 
Paribas S.A.), CS (AXA Bank Belgium SA), INGA (ING Groep N.V.), ISP (Intesa Sanpaolo S.p.A.), KBC (KBC 
Group NV), NDA (Nordea Bank Abp), SAN (Banco Santander, S.A.), and SBER (Sberbank Europe AG).

Źródło: na przykładzie wybranych banków: ACA (Crédit Agricole S.A.), BBVA (Banco Bilbao Vizcaya Ar-
gentaria, S.A.), BNP (BNP Paribas S.A.), CS (AXA Bank Belgium SA), INGA (ING Groep N.V.), ISP (Intesa 
Sanpaolo S.p.A.), KBC (KBC Group NV), NDA (Nordea Bank Abp), SAN (Banco Santander, S.A.), SBER 

(Sberbank Europe AG).



A. H. Pasieczna-Dixit, D. Starkowski 

128

Model Interpretation Related Issues

This source of model risk refers to the risk associated with the usage of model out-
comes for decision-making. Accordingly, the term ‘model interpretation’ here refers to 
the analysis and application of the model outcomes. Since models are simplified explana-
tions (approximations) of real-world phenomena, they are limited in scope and applica-
bility. Practitioners use models to understand a particular problem, but the models do not 
capture the entire picture. Misinterpretation thus can happen due to practitioners using 
models as ‘answer machines’ [Wagner et al. 2010], or when the results are taken out of 
context. In the context of SRMs, understanding and managing this risk is quite important. 
Typically, regulatory bodies might use SRMs with the intention of monitoring the over-
all systemic stress and controlling the contributions of individual banks. If the overall 
systemic stress is underestimated, then this can lead to an unobserved buildup of stress, 
which might culminate in an eventual collapse of the financial system and adversely 
impact the larger economy. An overestimation of the overall systemic stress can also 
adversely affect the financial system since regulators might stifle economic growth by 
restricting perceived risky ventures.

While aiming to control the contributions of individual banks to overall systemic 
stress, the model risk of SRMs can lead to suboptimal regulatory action. 

Typically, systemically important banks are required to allocate a pre-determined 
part of their capital to offset systemic risk. For example, consider the bucketing scheme 
used by the Financial Stability Board (FSB) in conjunction with the Basel Committee 
to determine the global systemically important banks (G-SIBs). Depending on the even-
tual bucket into which a bank is placed, it must have from 1% (for bucket 1) to 3.5% 
(for bucket 5, which is empty when the study is performed) of its Common Equity Tier 1 
capital as a buffer for its systemic risk contribution [Bank For International Settlements 
2018]. If a bank is wrongly allocated to a lower bucket (perceived less risky by regulators), 
then (a) it will be allowed (unjustly) to take more risky investments without a buffer to 
reduce the systemic stress, and (b) in the event of a systemic shock, it may not have 
enough capital to deal with the shock. On the other hand, if the bank is wrongly allocated 
to a higher bucket (perceived riskier), then the bank will be blocked from taking on ven-
tures (the result might be that economic growth is stifled) with reduced available liquidity 
within the financial network.

Even though the two SRMs studied here are linked to the TCTF aspect of SR, they 
approach the problem slightly differently, and thus may not be directly compatible if used 

it is not guaranteed that the same bank will have the highest contribution according to 
MES. This problem is further amplified for regulatory bodies, who must analyze and 
weigh various aspects of SR (e.g., too-big-to-fail or TBTF, TCTF, impact on non-financial 
sectors). Given the types of SRMs in the finance literature, and their associated model 
risk, identification of systemically important banks and the management of overall sys-
temic stress is a daunting task for regulators. When using model outcomes, human inter-
vention might be needed, and such an option should be provided in any model-based 
framework. Indeed, in the bucketing scheme by the FSB, the G-SIBs may be placed in 
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buckets other than what the model dictates, referred to as exercise of supervisory judge-
ment in their framework.

We provide one example below that attempts to highlight the risks of model misinter-
pretation within the context of SR. Specifically, we show that model outcomes using one 
SRM can lead to incompatibilities with outcomes from another SRM.

In this example, we rank all banks based on three criteria: 
 – size (specifically, the market capitalization without free-float corrections), 
 – MES, 
 –

The size-based ranking acts as an indicator of the TBTF aspect of SR, whereas the 

on the market. The size-based ranking is done using the market capitalization of the banks 
(without correcting for the free-float factor) and has minimal computational requirements 
(just a product of the market price and outstanding shares amount). The other rankings 

approximation for the returns.
In Figure 9, we show the comparison of the ranking across the three indicators for 

five banks (out of 47) during the year 2020, where these banks were always among the 
top five according to size. We immediately observe that the rankings are not compatible 

rank according to size but lies between the 35th and 40th ranks according to MES, and 
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these banks is not consistent. This has important implications in regulatory and banking 

contexts, since relying on one SRM is not enough to really determine the systemically 

significantly important banks. Indeed, one might require many indicators to fully under-

stand the contribution of a bank to the overall SR. While the usage of more indicators 

leads to a potential increase in model risk, missing out potential SR contributions can 

have negative implications for the financial system.

One approach to deal with multiple indicators might be to combine class effects. For 

example, we might wish to average the MES and ΔCoVaR outcomes to become a net 
TCTF contribution. Multiple aspects of SR, such as the TBTF and TCTF contributions, 

can then be added together before the ranking or clustering is done. This type of approach 

is used to identify the G-SIBs, where five aspects of SR are considered with equal 

weights: size, cross-jurisdictional activity, interconnectedness, substitutability/financial 

institution infrastructure and complexity. Each of these aspects is a (weighted) sum of 

multiple indicators so that regulators can obtain an overall picture of a bank’s contribu-

tion to SR. Despite this, the framework allows for the exercise of supervisory judgement 

(human intervention) so that banks can be manually placed into risk buckets as deemed 

necessary, since a sum of indicators is still a model and might be insufficient to explain 

SR contributions.

Discussion

The examples highlighted in Section 3 indicate that practitioners are exposed to model 

risk at every stage of the modelling process – from data collection to model deployment 

and interpretation. Before attempting to provide some general strategies to help mitigate 

model risk, we will discuss some consequences of model failure at the level of individual 

companies and regulatory bodies.

Model failures can be devastating for individual companies and have negative effects 

on the financial network. For example, the failure of Long-Term Capital Management 

(LTCM) is often attributed to its poor risk management in terms of model risk [Kolman, 
1999, Kato et al. 2000, Powell 2023]. Some have suggested that simply increasing the 

amount of data for their VaR models from the past five years to the past eleven years 

would have captured earlier stock market falls, and perhaps have reduced the impact of 

the crash [Ferguson 2008]. The consequences of LTCM’s fall involved a major bailout 
with many major banks to prevent a systemic contagion event [Lowenstein 2001]. It 
seems that the benefits of a proper risk management framework that includes models and 

the modelling process far outweigh the risks associated with a failure of the models.

In the context of SR regulation, regulatory model failures can impact the entire finan-

cial network and the larger economy. Regulators typically rely on models and require 

banks to allocate a part of their capital to offset ‘known’ individual and systemic risks. As 

banks reduce these risks, they are incentivized to reinvest their freed-up capital to take 

up risk elsewhere. If there is a sector (or asset class) that is unregulated or considered 

less risky, banks will probably gravitate towards it, leading to a build-up of risk there  

[Acharya et al. 2011]. Depending on how the models work, this build-up might pass 
under the regulatory radar, creating a vulnerable spot for a systemic failure. Furthermore, 

banks are tempted to ‘game the rules,’ sometimes referred to as ‘regulatory arbitrage’. 
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Broadly speaking, banks would like to structure their activities in a way that minimizes 

regulatory constraints while allowing them to take as much risk as possible [Nouy 2017]. 
In a model-based regulatory framework, banks might ‘optimize’ their reporting so that 

they can take more risks than the regulations allowed [Behn, et al. 2022]. To avoid unin-

tended consequences, regulatory bodies thus must require risk management frameworks 

to include models, and use manual intervention when models are lacking.

Given the consequences associated with model failure, it makes sense to envisage 

a risk management framework that actively includes model risk. Furthermore, risk is 

perceived differently by various professions [Harkins 2013], and so there is a need for 
harmonization and open communication between the data management teams, compu-

ter programmers, analysts, risk managers and decision makers. At a team level, strate-

gies would need to be implemented that aim to control their individual contributions to 

model risk. Some general strategies that might help with model risk management are 

provided below:

1. Managing dataset issues:

proper documentation of collected data, including source, time, data variables and 

description of the data variables;

summary statistics for missing datapoints;

highlighting potential biases within the dataset documentation.

2. Managing data processing related issues:

proper documentation of the transformations of the data, especially expected data 

input and expected transformed output;

highlighting the purpose of the data processing, and potential use cases, preferably 

with examples;

open communication about the automation tools used, including specific choices 

in code and test cases on which the code was evaluated.

3. Managing model construction related issues:

proper definition of the abstract model using algorithms and flowcharts that help 

highlight how the data is used and manipulated to gain the required outputs;

employment of strict model development practices that envisage model failures 

due to data issues, software and hardware issues and the inapplicability of the 

model;

brainstorming with other experts with the aim of ‘breaking’ the model to find 

potential limitations that may have been missed by the modeler;

highlighting as many assumptions and limitations of the model as possible;

indicating the choices used in the model development along with justification and, 

if possible, the impact of alternate choices.

4. Managing model implementation related issues:

proper documentation of the code so that other programmers can understand and 

alter it if needed;

inclusion and documentation of as many error catching scenarios as possible;

intensive testing of the code on all conceivable data, software, and hardware issues;

highlighting all implementation choices that were made based on the testing phase;

careful deployment of the code with sufficient monitoring in production before the 

model is used in decision-making.

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–
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5. Managing model interpretation related issues:

avoidance of complete reliance on model outputs for decisions;

open debate of the usage and limitations of data and computational models in the 

decision-making process;

push for regular revisits of the models to understand model limitations and drive 

better model development;

inclusion of a human judgement option to handle model failure.

These strategies target specific model risk sources, and every risk management frame-

work will need to adapt them, depending on their needs. For example, regulatory bodies 

might wish to emphasize the risk associated with model interpretation, since they would 

have to justify increasing (or decreasing) the capital requirements of individual banks. 

Banks, on the other hand, might focus on the risk associated with data management, 

model construction and implementation, to optimize their daily operations, from cash 

management to investing, while following the regulatory guidelines.

Large banks, on the other hand, might focus on the risk associated with model con-

struction and implementation, so that their activities take no more risk than is deemed 

necessary (and permitted). Hedge funds might target the risk associated with data and 

model aspects so that they can discover market inefficiencies for arbitrage.

To manage model risk, practitioners need to recognize that it will always be present. 

Models are approximations to observed phenomena and cannot be treated as the absolute 

truth. In quoting Box again [Box 1979], there is no need to ask the question ‘Is the model 
true?’ if ‘truth’ is the ‘whole truth’ as the answer must be ‘No.’ The only question of inter-
est is ‘Is the model illuminating and useful?’

Conclusions

As practitioners continue building their reliance on computational models, the risk 

associated with model failure increases. Model risk in the context of SR has more nega-

tive consequences for the financial network and the larger economy. In this work, we 

provided a classification of the model risk sources and gave specific examples in each 

category to highlight how model risk might impact the estimation of SRMs. We addition-

ally provided certain general strategies that might be employed at banks and regulatory 

bodies to mitigate the risks associated with these sources.

Given that model risk is always present, risk management teams must adapt their 

strategies to include modelling. This may be daunting due to the omnipresence of model 

risk – from the dataset collection to model usage. However, we argue that the benefits 

associated with controlling model risk outweigh the costs. As it is with models, there may 

be no one-size-fits-all framework to deal with model risk. Risk managers, data manage-

ment teams, computer programmers, analysts and decision makers would have to work 

together to identify and control the sources of model risk. No matter what the scope of 

applicability of models is, practitioners will require transparent communication about 

models and their limitations.

–

–

–

–
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APPENDIX

Table 1. List of banks in the study

Tabela 1. Lista banków uwzględnionych w badaniu

Country Bank Name Grounds for significance

Austria

Addiko Bank AG Significant cross-border activities

BAWAG Group AG Size (total assets EUR 30–50 bn)

Erste Group Bank AG Size (total assets EUR 150–300 bn)

Raiffeisen Bank International AG Size (total assets EUR 150–300 bn)

Sberbank Europe AG Significant cross-border activities

Belgium
AXA Bank Belgium SA

Article 6(5)(b) of Regulation (EU)  

No 1024/2013

KBC Group NV Size (total assets EUR 150-300 bn)

Bulgaria DSK Bank AD
Among the three largest credit institutions  

in the Member State

Cyprus

Bank of Cyprus Holdings Public  

Limited Company
Total assets above 20% of GDP

Hellenic Bank Public Company Limited Total assets above 20% of GDP

Estonia
AS SEB Pank Total assets above 20% of GDP

Swedbank AS Total assets above 20% of GDP

Finland Nordea Bank Abp Size (total assets EUR 500–1,000 bn)

France

BNP Paribas S.A. Size (total assets above EUR 1,000 bn)

Crédit Agricole Size (total assets above EUR 1,000 bn)

Société Générale Size (total assets above EUR 1,000 bn)

Germany

Aareal Bank AG Size (total assets EUR 30–50 bn)

COMMERZBANK Aktiengesellschaft Size (total assets EUR 300–500 bn)

Deutsche Bank AG Size (total assets above EUR 1,000 bn)

Deutsche Pfandbriefbank AG Size (total assets EUR 50–75 bn)

Greece

ALPHA SERVICES AND HOLDINGS S.A. Size (total assets EUR 50–75 bn)

Eurobank Ergasias Services and Holdings S.A. Size (total assets EUR 50–75 bn)

National Bank of Greece S.A. Size (total assets EUR 50–75 bn)

Piraeus Financial Holdings S.A. Size (total assets EUR 50–75 bn)

Ireland
AIB Group plc Size (total assets EUR 75–100 bn)

Bank of Ireland Group plc Size (total assets EUR 100–150 bn)
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Country Bank Name Grounds for significance

Italy

BANCA MONTE DEI PASCHI DI SIENA 

S.p.A.
Size (total assets EUR 100–150 bn)

BPER Banca S.p.A. Size (total assets EUR 75–100 bn)

Banca Carige S.p.A. – Cassa di Risparmio  

di Genova e Imperia

Article 6(5)(b) of Regulation (EU)  

No 1024/2013

Banca Popolare di Sondrio,  

Società cooperativa per azioni
Size (total assets EUR 30–50 bn)

Banco BPM S.p.A. Size (total assets EUR 150–300 bn)

Intesa Sanpaolo S.p.A. Size (total assets EUR 500–1,000 bn)

Mediobanca – Banca di Credito Finanziario 

S.p.A.
Size (total assets EUR 75–100 bn)

UniCredit S.p.A. Size (total assets EUR 500–1,000 bn)

Lithuania Akcinë bendrovë Điauliř bankas
Among the three largest credit institutions  

in the Member State

Malta
Bank of Valletta plc Total assets above 20% of GDP

HSBC Bank Malta p.l.c. Total assets above 20% of GDP

Portugal Banco Comercial Português, SA Size (total assets EUR 75–100 bn)

Slovenia Nova Ljubljanska Banka d.d. Ljubljana Total assets above 20% of GDP

Netherlands
ABN AMRO Bank N.V. Size (total assets EUR 300–500 bn)

ING Groep N.V. Size (total assets EUR 500–1,000 bn)

Spain

Banco Bilbao Vizcaya Argentaria, S.A. Size (total assets EUR 500–1,000 bn)

Banco Santander, S.A. Size (total assets above EUR 1,000 bn)

Banco de Sabadell, S.A. Size (total assets EUR 150–300 bn)

Bankinter, S.A. Size (total assets EUR 75–100 bn)

CaixaBank, S.A. Size (total assets EUR 300–500 bn)

Unicaja Banco, S.A. Size (total assets EUR 50–75 bn)

Source: bank data provided by the [European Central Bank].
Źródło: dane uzyskane z banku [European Central Bank].

cont. table 1

cd. tab. 1


